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Apparent Superluminal Propagation of a Laser Pulse in 
a Gain Medium 

P. Sprangle, J.R. Penano1, and B. Hafizi2 

Naval Research Laboratory, Plasma Physics Division, Washington D.C. 20375 

The distortion of a laser pulse propagating in a dispersive gain/absorptive medium 

is analyzed. The relationship between the distortion of the pulse and superluminal 

propagation is discussed. We present an analytical approach based on the laser 

envelope equation that is readily applicable to arbitrary input pulse shapes. This 

analysis is used to interpret recent experiments that claim to have observed 

distortionless superluminal laser pulse propagation. 

I. Introduction 

In a recent article in Nature [1], titled Gain-assisted superluminal light 

propagation, researchers reported observing superluminal propagation of a laser pulse 

through an amplifying medium by a new mechanism that does not distort the pulse. In 

this experiment, a long laser pulse was passed through an amplifying medium consisting 

of a specially prepared caesium gas cell of length L = 6 cm, as depicted in Fig. 1. The 

laser pulse of duration T = 3.7 (isec was much longer (1.1 km) than the gas cell, so that at 

any given instant only a small portion of the pulse was inside the cell. By measuring the 

pulse amplitude at the exit, it is claimed that both the front and the back edges of the 

pulse were shifted forward in time by the same amount relative to a pulse that propagated 
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through vacuum. In contrast to earlier works that have interpreted apparent superluminal 

propagation as a pulse reshaping effect [2,3], it is claimed in Ref. 1 that superluminal 

propagation is observed "while the shape of the pulse is preserved" and "the argument 

that the probe pulse is advanced by amplification of its front edge does not apply". This 

article generated a great deal of press attention around the world [4]. The objective of 

this paper is to provide a general analysis of laser pulse propagation in an anomalously 

dispersive gain/absorptive medium In addition, this analysis is used to comment on the 

conclusions reached in Ref 1. 

It is well known that in regions of anomalous dispersion the group velocity of an 

electromagnetic pulse can be abnormal, i.e., greater than c (the speed of light in vacuum) 

or negative [5,6]. While it has been claimed that group velocity "is just not a useful 

concept" in regions of strong anomalous dispersion [6], others have shown that for a 

Gaussian pulse, the group velocity represents the velocity of the peak of the pulse even 

when it is abnormal [2,3,7]. This apparent superluminal propagation results from a pulse 

reshaping effect by which a gain medium preferentially amplifies the front or absorbs the 

back of the pulse. This effect has been described theoretically using a Fourier transform 

method. For analytical tractability a Gaussian pulse was used and the refractive index 

expanded to keep only the lowest order group velocity dispersion (GVD) term [2,3,7]. 

Our analysis is based on an envelope equation that describes the propagation of 

arbitrary pulse shapes and can include higher order dispersion effects analytically. For a 

pulse with a well-defined leading edge, we show that the lowest order effect in a gain 

medium is that the pulse propagates with velocity c and undergoes a distortion in which 

the front of the pulse is amplified more than the back, i.e., differential gain. This leads to 

apparent superluminal pulse propagation; that is, the peak of the pulse travels faster than 



c. However, the velocity of the leading edge of the pulse does not exceed c. A related 

effect can also take place in an absorptive medium. Our analysis indicates that 

differential gain occurred in the experiment of Ref. 1 and can account for the observed 

pulse advancement. Hence, the interpretation in Ref. 1 that superluminal propagation 

occurs without amplification of the leading edge of the pulse is incorrect. 

n. Analytical Model 

The following analysis considers a laser pulse propagating in a general dispersive 

medium characterized by a frequency dependent complex refractive index n{co). We 

assume that the deviation of the refractive index from unity, i.e., An(cö) = n(a>) -1, is 

small and neglect reflections of the laser pulse from the medium boundaries at z = 0 and z 

= L. To determine the evolution of the pulse envelope we represent the laser electric 

field as E(z,t) = (1/2) A(z,t)exp[i(k0 z-(001)] + cc, where A(z,t)is the slowly 

varying, complex pulse envelope, k0 = Ct)0 n{(00)lc is the complex wavenumber, co0 is 

the carrier frequency and cc denotes the complex conjugate. The field is polarized in the 

transverse direction and propagates in the z-direction. Since k0 is complex, the factor 

exp(-Im(fc0)z) represents an overall amplification/absorption of the pulse at frequency 

(00 and does not cause pulse distortion. The actual laser pulse amplitude is 

\A(z,t)\exp[-hn(k0)z]. 

The equation describing the evolution of the laser pulse envelope, including all 

higher order dispersive effects, is given by [8] 

dz      cdt 
A(z,t) = 

djß-w/c)' 

do) 

2*0 

dt 

*  +  ii 

dz' m=l m! 
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dmß2 

d(0 m 

im 

dt m 
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where ß =0)n(co)/c is the frequency dependent wavenumber, [ Jo implies that the 

quantity in brackets is to be evaluated at a = 0)Q , and the laser pulse envelope at the 

input to the amplifying medium A(z= 0,f)   is assumed given. Equation (1) was derived 

by substituting the representation for the laser electric field into the wave equation and 

performing a spectral analysis [8,9] that involves expanding the refractive index about the 

carrier frequency co0. If the spectral width of the pulse is sufficiently narrow, it is valid 

9 9 
to limit the analysis to terms of order d Idt , i.e., lowest order GVD effects. With this 

9 9 approximation, together with neglecting the small term proportional to d  Idz , Eq. (1) 

reduces to 

— + -— \A(z,t) = 
dz     cdt 

(  d   i   a2     ^ 
A(z,t), (2) 

where Kt = [3'/c((y)/36)']0, £ = 1,2,..., and K(co) = coAn(o))/c. This approximation, 

which requires both a sufficiently short interaction length and long pulse duration, is 

sufficient for the present purpose. For pulse propagation in vacuum, An(o)) = 0 so that 

the right hand side of Eq. (2) vanishes and the laser envelope is given by 

A(z,t) = A(0,t-z/c), indicating that the pulse propagates with velocity c without 

distortion. 

Equation (2) can be solved iteratively assuming that terms on the right hand side 

get progressively smaller. However, to indicate where inconsistencies in the ordering of 

approximations can arise we proceed with a spectral analysis and show how to recover a 

consistent ordering. Equation (2) is Fourier transformed in time and the resulting 

differential equation in z is solved for the transformed envelope. Inverting the 

transformed envelope yields the solution 



A{z,t) = -jLr °jdv A(0,v)exp(-iv(/-z/c))exp(/x:1v z + iK2v2z/2j,   (3) 
4lK  -co 

where A(0,v) is the Fourier transform of the envelope at z = 0, and v is the transform 

variable. 

It is assumed that the following inequalities hold: 1» pqid » K2V
2
Z/2 , where 

V = l/randz*=L. To correctly evaluate the integral in Eq. (3), the exponentials in the 

small quantities should be expanded to an order of approximation consistent with Eq. (2), 

otherwise unphysical solutions may result. For example, if the lowest order GVD term, 

K2v
2z/2, is neglected in Eq. (3), the laser envelope is given by 

i oo 

A{z,t) = -f= jdv A(0,v)exp(-iv(r - z/c))exp(iR:1v z). (4) 

Equation (4) can be integrated exactly to give 

A{z,t) = A(0,t-zlvp), (5) 

where the quantity vp = \d(<ün/c)/d(t)Yl =C/(1+CK{) defines the group velocity of the 

pulse. The exact solution, given by Eq. (5), to the approximate envelope equation can 

clearly lead to unphysical results since it implies that, to the lowest order of 

approximation, the entire pulse propagates undistorted with velocity vp . This 

interpretation is due to retaining terms beyond the order of the approximation. For 

example, neglecting K2 terms in the exponent of Eq. (4) is equivalent to keeping terms 

proportional to (fqvz)2 while neglecting terms proportional to K2V z which are of the 

same order. 



In a dispersive gain/absorptive medium, vp can be abnormal. For example, if 

-1 < cKi < 0, the pulse velocity exceeds c. For the parameters in Ref. 1, however, cKy 

is essentially real and < -1, giving a negative pulse velocity, vp =-c/310. A negative 

pulse velocity implies superluminal propagation if one considers the pulse delay time 

[1,10]. The delay time, Ar = L/vp - Lie, is defined as the difference in the transit 

times of an arbitrary point on the pulse in the dispersive gain/absorptive medium and in 

vacuum. Negative delay times, which is the case for the parameters of Ref. 1, imply 

superluminal propagation. While it is physically possible for points on the pulse to have 

negative delay times, e.g., the peak of the pulse, this should not be interpreted as 

superluminal propagation of the entire pulse since the pulse distorts. 

To properly describe higher order effects it is necessary to solve Eq. (3) by 

keeping the order of approximation consistent. Expanding the exponential terms in Eq. 

(3) to second order yields 

A(z,t) = (l/V^F) JJvA(0,v)(l + iKlZv + (l/2)(iK2z-K?z2)v2) 
—-oo 

xexp(-rv(/ - zlcj). (6) 

Equation (6) can be integrated to give 

A(z,t) 
( ,        w __xg2 ^ 
l-Kl^-kkK2Z-K\Z2) dt    2^     '^V 

+ A(0,t-z/c). (7) 
) 

In Eq. (7) the first term on the right hand side denotes the vacuum solution, the second 

term represents lowest order differential gain, while the third and higher order terms are 

small and denote higher order effects. Equation (7) shows that the pulse propagates at the 

speed of light while undergoing differential gain (distortion). The quantity K\ can be 



negative in the presence of gain or absorption. In the case of gain, when Kj < 0, the 

front portion of the pulse is amplified more than the back. Note that the differential gain 

effect, can be recovered from Eq. (5) through a Taylor expansion. However, this is 

simply equivalent to expanding Eq. (5) so that the proper order of approximation is 

recovered, as was done in deriving Eq. (7). 

It is interesting to note that for a Gaussian pulse, the integral in Eq. (3) can be 

evaluated exactly if the expansion of the refractive index is carried up to K2, i.e., lowest 

order GVD. Taking the input laser pulse to have the form A(0,t) = a0 exp(-f  / 2T ), 

"■ 2   2 
where a0 is the peak amplitude, the Fourier transform is A(0,v) = aoTexp(-v T 12). 

For this pulse form the integral in Eq. (3) can be evaluated to give [3] 

-[t-q + cK^z/cf 
A(z,t) =   ,      G° exp 

T/I - iK2z/T
: 2T2(l-iK2z/T2) 

(8) 

where Re(l - iK2zlT2) >0, i.e., -lm(K2)z/T2 <1 is required for convergence of the 

integral. This analysis shows that the pulse propagates with velocity vp (even if vp is 

negative or greater than c) and remains Gaussian but with a different amplitude and 

width. This result is specific to Gaussian pulse which does not have a well-defined 

beginning or end [2,3]. 

III. Interpretation of Experimental Observations [1] 

The results of our analysis may be used to interpret the experiment of Ref. 1. As 

in Ref. 1, the frequency-dependent susceptibility of the medium is taken to have the 

following form near the resonance frequencies 

X</>£^ = ^4^+T^V. (9, 
2*    f-fi+ir f-h+'r 



where Mj 2 > 0 are related to the gain coefficients. The susceptibility in Eq. (9) 

represents a medium with two gain lines of spectral width /at resonance frequencies// 

and/2. The gain spectrum for MX1 = M =0.18 Hz, fx =3.5 x 1014 Hz, 

f2=f{+ 2.7MHz and 7 = 0.46 MHz, is shown in Fig. 2(a) (solid curve). For these 

parameters the deviation of the refractive index from unity An(co) shown in Fig. 2(b) 

closely approximates that in Fig. 3 of Ref. 1. The input laser pulse envelope, is taken to 

have the form 

A(z=0,t) = - 
a0sm2(7üt/2T),     0<t<2T (1Q) 

0, otherwise , 

where a0 is the pulse amplitude and O)01 2K = (f\ + f2) 12 is the carrier frequency. The 

spectrum associated with the input pulse is shown by the dashed curve in Fig. 2 and has 

no significant spectral components at the gain lines. 

For the parameters of the experiment we find that the first order correction in Eq. 

(7), i.e. the term proportional to d I dt, is of order KXLIT « -1.6 x 10~2 while the second 

order correction is K2L/T2 « -10
_3

J . Hence, the expansion performed to obtain Eq. (7) 

is valid. 

The differential gain effect requires that K{ < 0. Using Eq. (9) we find that Kx is 

approximately given by 

cK^-8K(fl+f2\M, 
(/2-/1) 

when  / - f\2 »y. In this case it is clear that a gain medium (M > 0) is required 

for K-! to be negative. For this case, the gain coefficient is given by 

-Im(k0) =$My/(f2 -/,)
2. Note that in an absorptive medium (M < 0), Kj can also be 



negative provided  / - f\j\ « y. In this case differential absorption occurs in which 

the back of the pulse is absorbed more than the front [2,3]. 

The validity of Eq. (7) was verified by numerically solving the envelope equation 

to all orders in Kg. Figure 3 compares the solution given by Eq. (7) at the exit of the gain 

medium (dotted curves) with the vacuum solution \A(0,t - Llc)\ (solid curves). Panel (a) 

shows the entire pulse profile. Consistent with the experimental measurements, the 

leading edge is shifted forward in time relative to the vacuum solution by 62 nsec. Panel 

(b) shows three curves: the solid curve denotes the vacuum solution, the dotted curve 

shows the result obtained from Eq. (7), and the dashed curve shows the result obtained 

from Eq. (5). The dotted curve shows that the front of the pulse propagates with velocity 

c; the propagation is not superluminal. The unphysical solution, given by the dashed 

curve, shows the front of the pulse propagating at superluminal velocities. Panel (c) is an 

expanded view near the peak of the pulse showing that the front is amplified more than 

the back. 

IV. Conclusions 

We have analyzed the propagation of a laser pulse in a dispersive gain/absorptive 

medium using an approach based on the pulse envelope equation. Using this approach 

allows analysis of higher order dispersive effects and arbitrary input pulse shapes. We 

find that to properly describe pulse propagation, a consistent ordering of the 

approximations is necessary. We show that in a gain medium, the lowest order effect is 

that the pulse propagates with velocity c and undergoes differential gain, i.e., a distortion 

in which the front of the pulse is amplified more than the back. Our analysis indicates 

that this differential gain effect is misrepresented as a newly observed mechanism for 

superluminal propagation in Ref. 1. This effect should not be viewed as superluminal 



propagation, but is the result of pulse distortion due to the addition of photons to the front 

of the pulse. 
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Figure 1. Schematic showing a long laser pulse entering a gain medium. 
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7 = 0.46 MHz. The dashed curve shows the spectrum associated with the pulse 

envelope of Eq. (10) with T = 3J usec. 
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Figure 3: Dotted curves show the pulse envelope amplitude I A(L, t) I at z = L 

obtained from Eq. (7). Solid curves denote a pulse that has traveled a distance L 

through vacuum. The dashed curve in panel (b) is the unphysical solution 

obtained from Eq. (5) showing superluminal propagation. Panels (b) and (c) are 

expanded views of the front and peak of the pulse, respectively. The parameters 

for this figure are the same as in Fig. 2. 
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